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The problem of controlling, maximizing or minimizing the inclination of a swing to the vertical at its 

highest point is considered. The swing is modelled by a plane compound pendulum on which a point 

mass is located. This point can be displaced within limits along the straight line passing through the 

axis of support of the pendulum and its centre of mass. Viscous and dry friction are taken into account 

at the supporting axis, together with “aerodynamic” drag that is linear in the velocity and acting on the 

moving point. The controlling variable is the distance from the axis of support to the moveable point. 

IT IS WELL KNOWN (see e.g. [l, 21) that a swing with a person on it has its oscillations built up 
(pumped) if the centre of mass of the system is raised when it passes through its lowest point 
and lowered when it is at its highest point where its velocity is zero. Under certain conditions a 
similar control law, which will be explained in this paper, is optimal from the point of view of 
maximizing the deviation of the swing from the vertical at its highest point, i.e. at the end of an 
oscillation half-period. If, however, there is viscous friction due to air resistance and (or) there 
is dry friction at the hinge, the optimal control changes form. It turns out that the switch-over 
proceeds according to how the swing passes through its lowest point. Furthermore, this switch- 
over may proceed smoothly (continuously). An optimal swing-damping law is constructed 
which is in some sense the opposite of the pumping law. 

The swing control problem is associated with the problem of using extendible rods to damp 
the oscillations of a satellite about its centre of mass in a gravitational field, and with control 
problems for some motions in sport. It is also of interest in theoretical mechanics. 

1. THE EQUATIONS OF MOTION 

We will model the swing-person system by a plane compound pendulum of mass m with a 
material point of mass M that can be displaced along it (Fig. 1). Let Z be the moment of inertia 
of the pendulum about the point of support 0 and p the distance from the point 0 to the 
centre of mass of the pendulum C. The material point A4 can be moved along the line OC. Its 
distance OM from the point 0 is denoted by 1. Let 1, c I s 4, where &, 1, = const, 4 > I,. 

The equation of motion of this system is 

$[(I+Ml’)$] dv +(c12+C,);i; + v+c=o, C=(Ml+mp)gsincp (1.1) 
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FIG. 1. 

Here cp is the anticlockwise angle of deviation of the pendulum from the vertical (Fig. l), 
c>O is the coefficient of viscous damping due to air resistance opposing the motion 
(pumping) of the mass M (the person) [l], c, > 0 is the coefficient of viscous damping due to 
air resistance opposing the motion of the pendulum without the mass M (without the person), 
and also in the pivot, g is the acceleration due to gravity, and v is the moment of the force of 
dry friction in the pivot, whose limit is equal to v, 

v= ( 
v,sgn<b, (b+O 

-L $=O, l[lcv, 

vfJ* +o, ~a-%?, 

-vg , +=o, c*vo 

(1.2) 

We introduce dimensionless time z, moment of inertia j, coefficients of viscosity x and x1, 
the threshold of the moment of the frictional forces 6, the gravitational moment of the 
pendulum p, and the distance OM denoted by u 

Then ES+ (1.1) can be written in the form of a system of Cauchy equations 

r$=Kl(j+u2) 
(1.3) 

f= -(IluZ+X;I)K/(j+U2)-_sgnk:-(u+~L)sinrp 

Here K is the total angular momentum of the system and the overdot denotes differentiation 
with respect to 2. The introduction of the phase variable K to replace (i, enables us to avoid 
differentiating the variable U, which can change discontinuously, with respect to time. Together 
with U(Z) the velocity cb(z) undergoes discont~~ties, but the angular momentum K(z) remains 
a continuous function (so long as the viscous forces remain finite, which is the case in the 
model). The control u, together with the angle <p, occur non-linearly in system (1.3). Only the 
top line of (1.2) is used in system (1.3). 

According to the above, the controlling parameter u is restricted 

0.4) 
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We shall assume that 6 c 1 + p. Then the stagnation zones of systems (l.l), (1.2) 

-Q.(u) s Q C Q.(U), K = 0 (1.5) 

~E-QP,(u)~Q~~+Q.(~), K=O (1.6) 

do not occupy the entire range --5c c Q < x when u = 1, and the same is therefore true for any 
u E [l, u]. Hence there are two intervals containing the points x/2 and -x/2 such that for angles 
Q(O) contained in them dry friction cannot prevent the pendulum moving away from rest, 
whatever the position of the material point M. 

2. STATEMENT OF THE PROBLEM 

Let the initial state of system (1.3) lie outside the intervals (1.5) (1.6) for any value of 
UE t1, vl 

--IE + Qt (1) < Q(o) < -Q, (1). K(0) = 0 (2-l) 

We will formulate the problem of optimally controlled swing pumping: it is required to find 
a control law for the parameter I( in the interval (1.4) for which max Q(B) is obtained, where 0 is 
the fist instant after the zeroth instant of time when K(0) = 0. We will write this formulation of 
the problem as follows: 

m= [Q(e)], I=a&lJ K(O)=O, 8>0 

We write the problem of the optimal damping law for the swing in the form 

(2.2) 

(2.3) 

In the statement of the problem (2.2) (problem (2.3)) the initial state (2.1) is assumed to be 
such that a time 8 exists at which the maximum (minimum) angle (p(8) and K(Q)=0 are 
reached. 

Problems (2.2) and (2.3) are in essence Bulgakov’s [3] problems for accumulated perturb- 
ations. The modified statement of the Bulgakov’s problem, in which the time 8 at the right- 
hand end is not specified, but is determined by a condition of the form K(8) = 0, can be found 
in [4]. 

Under condition (2.1) the angular momentum K > 0 in the time interval 0 c it c 8. That is 
why only the upper line of relations (1.2) is used in Eqs (1.3). 

3. METHOD OF SOLVING THE PROBLEM 

For any admissible control u(z) the angle Q(Z) increases strictly monotonically as z increases 
from 0 to 8. Using this property when considering the phase trajectories of system (1.3) in the 
(Q, ZC) plane, one can verify that problem (2.2) is solved by a control u which maximizes the 
derivative dK/dcp at each point of the trajectory. A control u which minimizes this derivative 
solves problem (2.3). The extremum of this derivative is reached at that value of u ~[l, r/l 
which extremizes the function 

-xKu* -[6+(u+@sinQ](j+u*) (3.1) 



314 E. K. LAVROVSKII and A. M. FORMAL’SKII 

If O~q~rr, the extrema of (3.1) are easily found: the maximum is reached at u = 1 and the 
minimum at u = U. For -ICC cp c 0 an extremum of function (3.1) may be reached not only at 
boundary values u=l or u=U, but at intermediate values 1 cu <U. If -x<cp<O the 
maximum (minimum) of function (3.1) is reached at the same values of u as the maximum 
(minimum) of the function 

F(u,A,j)=~c(u~+Au+j) A=A(cp,K)= 
6+xK 

sin cp 
+cL (3.2) 

Below we shall use the equation 

aF&=32+2AU+ j=o (3.3) 

to find the extrema of function (3.2). 
It follows from considerations of the functions (3.1) and (3.2) that the coefficient of viscosity 

x1, unlike x and 6, has no effect on the picture of the optimal control synthesis. 
We note the following property of the control which maximizes function (3.1), and the 

trajectory corresponding to it. Take any point (cp!, K*) lying on this trajectory. If for any other 
control the trajectory intersects the line cp = (p*, then at the point of intersection K s K * . 

4. A SYSTEM WITHOUT AIR RESISTANCE OR DRY FRICTION 

When there are no such resistance forces, i.e. when x = 6 = 0, the maximum of function (3.1) 
is reached when u = U if -x < cp < 0, and at u = 1 if 0 s cp s 1~. Considering the subsequent half - 
period of the swing oscillation (for z > 0), we conclude that the optimal control has the form 

u=U for CpKcO (*CO), u=l for *a0 (cpQ,aO) (4.1) 

The motion of massless swings (j=u =0) with control (4.1) was considered in [l], without, 
however, considering the question of its optimality. 

The optimal damping law is “the opposite” of (4.1) 

u=l for QK<O (@CO), u=U for QKaO (~@a01 (4.2) 

Control (4.1) maximizes the deviation of the swing from the vertical over any previously 
specified number of half-oscillations, whereas control (4.2) minimizes this deviation. 

5. PUMPING OF THE SWING WHEN ALL FORCES ARE PRESENT 

Taking into account all the dissipative forces described in system (1.3), the optimal control 
structure turns out to depend on the moment of inertia j. Analysis of function (3.2) and its 
derivatives with respect to u shows that three situations arise in the optimal control 
construction 

(1) jG2U+l, (2) 2U+lc jc3U2, (3) 3VG j. 

In case 1 function (3.1) reaches a maximum if 

U, 6+~K+hsincp~O j+l 
S+XK+AS~Q>O 

h=U+p+ - 
U+1 

(5.1) 
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The switch-over line for control (5.1) is given by the equation 

6+~K+hsincp=O (F (1, AJ = F (us A 11) (5.2) 

Figure 2 shows the optimal control synthesis picture in the half-plane K > 0 for case 1 (the 
stagnation zone is shown hatched). The switch-over curve (5.2) intersects the semi-axis K = 0, 
cp < 0 at two points 

cp=rp, =-arcsin(6/h) and cp=-X-Q, (5.3) 

At x = 0 the curve (5.2) becomes the two lines (5.3). 
The construction of the optimal control synthesis picture enables one to solve the 

optimization problem for more than just the initial states (2.1). 
Control (5.1) is of relay form, as is (4.1). However, the switch-over of control (5.1) from 

u = U to u = 1 occurs not at Q = 0, as for control (4.1), but earlier. As 6 and x increase and p 
and j decrease, the switch-over point on each optimal trajectory moves away from the Q = 0 
axis. The values of (5.3) lie in the intervals (1.5) and (1.6) obtained for u = 1. Hence for any 
initial state (2.1) at the beginning of the optimal motion u = U. If however --x c Q(O) c --x - 'po, 
K(0) > 0, then at the beginning of the optimal motion u = 1. 

When the coefficient of friction x increases the switch-over time for control (5.1) from the 
value U to 1 approaches the start of the motion. This happens because, as x increases, it 
becomes more favourable to reduce earlier the frictional torque p2K/(j+u2) which opposes 
the pumping, despite the associated decrease of the pumping torque of the gravitational force 
-usinQ. 

In case 2 the function (3.1) is maximized when 

u, 6+xK+I(U)sinQG 0 

u = r$(Q,K), -h(U)sinQ<&+XKS-q(l)sinQ 

1, 6+XK+Ij(l)SinQ>O 

(5.4) 

u1 (Q, K) = -$A+~-), k(u)=2&%+~, q(u)= &(j+3uz)+p 

The quantity %(Q, K) is the smaller of the two roots of quadratic equation (3.3). 
Function (5.4) is discontinuous on the switch-over curve 

G+xK+h(U)sincp=O (F[u,(Q,K),A,jl=F(U,A,j)) (5.5) 

Hence during optimal motion the control “descends” with a jump from the “buffer” U to the 
value %(Q, K). Then, during the motion u decreases strictly monotonically and continuously to 
1. At j = 2U + 1 the “relay-continuous” control (5.4) becomes the purely relay control (5.1). 

F10.2 
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If x = 0, expression (5.4) becomes 

The angle qB is obtained when solving Eq_ (5.5), while the angle ppl is found by solving Eq. 
(3.1) with u = 1 

cpo = - arcsin [S / h(U)], rp, = - arcsin / r( (l)] (5.7) 

The values of q@ and R obtained in (5.7) and the value of q,-, in (5.3) are identical when 
j=2U+l, 

As an example, Fig_ 3 shows the graph of (5.6) for 6 = 1, p = 0.5, j = 9, U = 2 in the interval 
[<p,, cp,] and in its neighbourhood. 

In case 3 the function (3.1) is maximized under the control 

Figure 4 shows the synthesis picture for optimal control (5.8) in the half-plane K > 0. 
Unlike case 2, in case 3 the optimal control is continuous. After “descending” from the 

buffer U it decreases to unity strictly monoto~~ally along each trajectory. At j = 3U’ control 
(5.8) is identical with (X4). If x = 0 the optimal control has the form (5.6). The value of ‘pO is 
obtained from Eq. (3.3) with u = U 

and is identical with that obtained in (!%7) with j = 3U2. 
The interval ((p,,, ql) is contained in the interval (1.5) obtained with u = 1. As S increases and 

u and j decrease, this interval moves away from the q = 0 axis where the switch-over of control 
(4.1) occurs. 

The results obtained here show that when there is dry friction at the pivot and (or) viscous 
friction due to air resistance to the motion of the mass M, in optimaI motion the centre of mass 
of the system is displaced upwards not when the swing passes through its lowest point, as in the 
cases of control (4.1), but earlier. 
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The optimal control synthesis picture for pumping is symmetric about the origin of coordin- 
ates. Hence it is easy to extend it to the half-plane K c 0. 

It is of course not always possible to pump using optimal control. If, for example, the point 
(q(O), 0) is sufficiently close to the “lower” stagnation zone (LS), then after a finite number of 
oscillations the system falls into this zone and the swing stops. Oscillations of the swing are 
also damped if 6 = 0 and the quantities 1~ and (or) x1 are sufficiently large. At the same time, 
for any initial angle (p(O) $0 there are also sufficiently small values of x, x, and 6 so that under 
optimal control the swing performs undamped oscillations. Initial conditions (2.1) and system 
parameters exist for which after one or several oscillations the swing “gets stuck” in the 
“upper” stagnation zone (1.6). 

At a given initial state (2.1) we denote by (9' the rn~irn~ value of the angle Q(Q) at the time 
8 when K(0) = 0. Then the deflection Q' cannot be achieved faster than in the time 8. Con- 
sequently, controls (4.1), (5.1), (5.4) and also (5.8) are optimal in the sense of reaching the 
deviation Q' fastest. 

We will assume that the system parameters and the initial state Q(O), K(0) are such that 
under a control (4-l), (U), (5.4) or (5.8) we have cp(z) =x, K(z) > 0 at some time z, i.e. the 
swing “flies through~ the upper equilibrium position. Then the ~orres~nding control max- 
imizes the total angular momentum K(z) at the time z when q(r) =x. We have thus found a 
control, such that if its synthesis picture is constructed on a phase cylinder --IC d Q c JC, it solves 
not just the optimal pumping problem, but in a certain sense the optimal “revving-up” 
problem as well. It is clear that if ;c f 0, then for sufficiently large values of K the control u = 1 
is optimal for rewing-up. If x =0, then, for example, in case 1 the switch-over curves for 
controlling rewing-up are the lines (5.3). In the strip of the phase cylinder lying between these 
lines u = U, and outside the strip u = 1. 

6. DAMPING OF A SWING 

In taking account of all the forces described in system (1.3), the structure of the optimal 
control of swing damping, as for pumping, depends on the moment of inertia i. Analysis of the 
function (3.2) and its derivative with respect to u shows that the following three cases occur in 
the construction of this control 

(1) i~33, (2) 3<jcU(U+2), (3) U(U+2)9 

i.e. the ranges of variation for i in which the structure of optimally controlled swing damping is 
uniform differ from the ranges in which the structure of optimally controlled swing pumping 
is uniform. 

In case 1 function (3.1) is boozed if 

1, 6+XK+lJ(i)SinQc 0 

u = J+(Q,K), -q(l)sinQ=G+XKG -t\(u)SiJlQ 

u, &+XK+q(~)SiIlQ~ 0 

q(cp,K) = ;(-A+dG) 

(6.1) 

The quantity z+(Q, K) is the largest of the two roots of the quadratic equation (3.3). 
Control (6.1) is a ~on~uous function of its arguments. On each trajectory, after “descent” 

from the buffer u = 1 its increases to the value U proceeds strictly monoto~~ally. 
The inequalities governing the domains where the control is not equal to its boundary values 

are opposite in formulae (5.8) and (6.1). 
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In case 2 (3.1) is minimized if 

I 
1, 6+XK+h(l)sincp=G 0 

1( = *(cp,K), -A(l)sincp<6+XKG+Y)sincp 

u, S+XK+ll(U)sincp~ 0 
(6.2) 

Function (6.2) becomes discontinuous at the switch-over curve 

g+XK+h(l)sincp=O (F(l,A,j) = m+((~,K)Ajl) 

Hence in optimal motion the control u changes abruptly from the value 1 to z+(cp, K). Then it 
increases strictly monotonically and continuously to the value U. 

In case 3 the function (3.1) is minimized if 

1, 6+XK+AsincpGO 

’ = U, g+XK+Asincp>O (6.3) 

The switch-over lines of (3.1) are described by Eqs (5.2). 
The structure of the relay control (6.3) damping the swing is “opposite” to the structure of 

the relay control (5.1) pumping the swing. However condition 1 of Sec. 5, with which control 
(5.1) was obtained, is inconsistent with condition 3 of Sec. 6. With condition 1 of Sec. 5 the 
optimal control for swing damping can be of the form (6.1) or (6.2). Under condition 1 of Sec. 
6 the optimal damping control is continuous, while the optimal pumping control (5.1) is relay. 
With condition 3 of Sec. 5 the pumping control (5.8) is continuous, while the damping control 
(6.3) is relay. 

In all the damping control rules (6.1)-(6.3) the centre of gravity of the system is lowered not 
when the swing passes through the lowest point, as in the case of control (4.2), but earlier. 

The swing pumping and damping problems posed in Sec. 2 are also solved if one assumes 
that not all values of u in interval (1.4) are admissible, but only the boundary values u = 1 and 
u = U. Here the optimal control will always be relay, and its switch-over occurs on curve (5.2). 
If x + 0 and (or) 6 + 0, this switch-over occurs at ‘p c 0. 

7. PUMPING AND DAMPING OF A SWING IN A SPECIFIED TIME 

We shall consider problems (2.2) and (2.3) for which the time 8 has been specified in 
advance. These problems cannot be solved by extremizing function (3.1). Their solution is 
constructed by means of the Pontryagin maximum principle [5]. Here Eqs (1.3) must be 
supplemented by the following relations 

y1(8)=0, K(O)=K@)=O 

(7.1) 

where w,(t) and w,(r) are conjugate variables and C is an unknown constant. The plus sign in 
the expression for H(u) is for the pumping problem and the minus sign for the swing damping 
problem. Because we are considering motion in the half-plane K > 0 we put sgn K = 1. 

If the time 8 is free, i.e. we are considering the problem posed in Sec. 2, then the optimal 
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solution is described by relations (1.3) and (7.1) with C = 0, from which we have w,(0) = 0. 
However, it is simpler to solve this case of the problem by finding extrema of function (3.1), as 
was done above. 

If the time 8 is specified, then C #O. Setting the value of (p(e) and the variable w,(e) at the 
final time 6 and integrating relations (1.3) and (7.1) on a computer from right to left, one can 
construct a two-parameter family of extrema of the variational problem. To solve the optimal- 
ity problem in question these parameters cp(8) and w2(e) must be chosen so that the initial 
value of the angle ‘p is equal to the specified ~(0) and the time to the specified 8. 

From a consideration of relations (7.1) it follows that the optimal control regime can contain 
intervals of intermediate control. There are no intervals with singular control, where w1 +_l E 0 
and wz = 0, because otherwise the boundary condition w,(u) = 0 will not be satisfied. 

Figures 5 and 6 show two examples of some results of a numerical investigation of the swing pumping 

problem for 6=x=x1 =0 (when there is no dissipation), u= 0.5, V = 2 and cp(O)=-O.4248. These 
investigations show that for negative values of w,(e) one obtains solutions with smaller time 13 than when 
v,(0) = 0, while for positive values of v,(O) the time is greater. For j = 15 (j > 3u2) the optimal control 
with the smaller time 8 = 8.58 which is obtained for w,(e) = -0.2 is shown on Fig. 5 by the solid curve, 
and with the larger time 0 = 10.38, which is obtained for w,(e) = 0.2, by the dashed curve. This is the con- 

trol with two switch-overs, continuous (the solid curve) and relay (the dashed curve). If the intervals with 

u = 1 and u = V are exchanged, the control shown by the dashed curve is qualitatively similar to the solid 
curve. 

FIG. 5. 

2 4 6 8 70 6 

FIG. 6. 
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For the same pumping problem when there is dissipation in case 3 of Sec. 5 with the time 6 being free, 
the optimal control (5.8) has one smooth switch-over. If a smaller time 0 is specified and v,(e) + -0, the 
length of the last time interval in which u > 1 (solid curve) tends to zero, and the first interval where u = 1 

increases, and the control tends to pure relay (4.1) with a free time 8 which in the specified situation turns 
out to be 9.63. If the time 0 is larger and w,(e) + +O, then the control tends to the same relay control (4.1) 
but here the length of the first interval, where u < U (the dashed curve), tends to zero, while the length of 
the final interval, where u = 1, increases. 

Numerical and analytical investigation of the pumping problem shows that here, when there is no 

dissipation, as well as in Sec. 5 where there is dissipation, cases 1, 2 and 3 appear, in which the optimal 

control takes less time than in Sec. 5, and which are of the pure relay, relay-continuous, and continuous 
form, respectively. Conversely, at larger times, the control is continuous, relay-continuous and pure relay, 
respectively. Unlike in Sec. 5, all the control regimes have two switch-overs. 

Figure 6 shows the dependence of the maximum of the pumping amplitude (p(e) on the specified time cp 
for a range of values of j. As one would expect, the maximum value of cp( 0) is obtained for a free time 8 

which is larger for smaller moments of inertia j. It is clear that for a given value of q(O) the first positive 
time 8 at which K(O)=0 cannot be chosen arbitrarily. It lies within certain limits. The numerical results 

shown in Fig. 6 illustrate this. 
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